
Articles
-
Jan 2, 2024 |
nature.com | Steven Bass |Deepak Kumar |Wojciech Krzemień |Bożena Jasińska |Aurélien Coussat |Meysam Dadgar | +9 more
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10−4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation. Positronium decay events can be used to test violation of fundamental symmetries. Here, the authors use events in the J-PET to improve existing limits on P, T and CP invariance in positronium decays, thanks to a method that does not require to measure the positronium spin but determining polarization of the annihilation photons instead.
Try JournoFinder For Free
Search and contact over 1M+ journalist profiles, browse 100M+ articles, and unlock powerful PR tools.
Start Your 7-Day Free Trial →