
Guozhen Shen
Articles
-
Jul 14, 2024 |
arxiv.org | Guozhen Shen
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
-
Jun 6, 2024 |
pericles.pericles-prod.literatumonline.com | Wenhao Yang |Guozhen Shen
Yang Li Shandong Provincial Key Laboratory of Network Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, 250022 China School of Integrated Circuits, Shandong University, Jinan, 250101 ChinaSearch for more papers by this author
-
Jan 4, 2024 |
onlinelibrary.wiley.com | Wenhao Yang |Guozhen Shen
Conflict of Interest The authors declare no conflict of interest. Supporting Information Filename Description adfm202312885-sup-0001-SuppMat.pdf1.5 MB Supporting Information References 1, , , , , , , , , , , , , , , , , , , , , , , , Nature 2019, 572, 106. 2, , , , , , , , , , Science 2019, 366, 210. 3, , , , Nat. Nanotechnol. 2020, 15, 529. 4, , , , , , Nano Lett. 2020, 20, 8059. 5, , Nanotechnology 2019, 31, 092001. 6, , , , , , , , , , , , , , , , Sci. Rep.
-
Jan 3, 2024 |
pericles.pericles-prod.literatumonline.com | Wenhao Yang |Guozhen Shen
Conflict of Interest The authors declare no conflict of interest. Supporting Information Filename Description adfm202312885-sup-0001-SuppMat.pdf1.5 MB Supporting Information References 1, , , , , , , , , , , , , , , , , , , , , , , , Nature 2019, 572, 106. 2, , , , , , , , , , Science 2019, 366, 210. 3, , , , Nat. Nanotechnol. 2020, 15, 529. 4, , , , , , Nano Lett. 2020, 20, 8059. 5, , Nanotechnology 2019, 31, 092001. 6, , , , , , , , , , , , , , , , Sci. Rep.
-
Aug 4, 2023 |
onlinelibrary.wiley.com | Guozhen Shen
Abstract It is proved in ZF $\mathsf {ZF}$ (without the axiom of choice) that a n ⩽ S n + 1 ( a ) $\mathfrak {a}^n\leqslant \mathcal {S}_{n+1}(\mathfrak {a})$ for all infinite cardinals a $\mathfrak {a}$ and all natural numbers n ≠ 0 $n\ne 0$ , where S n + 1 ( a ) $\mathcal {S}_{n+1}(\mathfrak {a})$ is the cardinality of the set of permutations with exactly n + 1 $n+1$ non-fixed points of a set which is of cardinality a $\mathfrak {a}$ .
Try JournoFinder For Free
Search and contact over 1M+ journalist profiles, browse 100M+ articles, and unlock powerful PR tools.
Start Your 7-Day Free Trial →