Muhammad Adnan Khan's profile photo

Muhammad Adnan Khan

Writer at Nature

Featured in: Favicon nature.com

Articles

  • Jan 11, 2025 | nature.com | Usama Ahmed |Tariq Ali |El-Hadi Aggoune |Tariq Shahzad |Muhammad Adnan Khan |Amna Sarwar | +1 more

    Network security is crucial in today’s digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.Intrusion detection systems (IDSs) are one of the significant aspect of cybersecurity that involve the monitoring and analysis, with the intention of identifying and reporting of dangerous activities that would help to prevent the attack.Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN) are the vector figures incorporated into the study through the results. These models are subjected to various test to established the best results on the identification and prevention of network violation. Based on the obtained results, it can be stated that all the tested models are capable of organizing data originating from network traffic. thus, recognizing the difference between normal and intrusive behaviors, models such as SVM, KNN, RF, and DT showed effective results. Deep learning models LSTM and ANN rapidly find long-term and complex pattern in network data. It is extremely effective when dealing with complex intrusions since it is characterised by high precision, accuracy and recall.Based on our study, SVM and Random Forest are considered promising solutions for real-world IDS applications because of their versatility and explainability. For the companies seeking IDS solutions which are reliable and at the same time more interpretable, these models can be promising. Additionally, LSTM and ANN, with their ability to catch successive conditions, are suitable for situations involving nuanced, advancing dangers.

  • Aug 12, 2024 | nature.com | Tahir Abbas |Arfan Ahmed |Tariq Shahzad |Areej Fatima |Meshal Alharbi |Muhammad Adnan Khan

    Emerging Industry 5.0 designs promote artificial intelligence services and data-driven applications across multiple places with varying ownership that need special data protection and privacy considerations to prevent the disclosure of private information to outsiders. Due to this, federated learning offers a method for improving machine-learning models without accessing the train data at a single manufacturing facility. We provide a self-adaptive framework for federated machine learning of healthcare intelligent systems in this research. Our method takes into account the participating parties at various levels of healthcare ecosystem abstraction. Each hospital trains its local model internally in a self-adaptive style and transmits it to the centralized server for universal model optimization and communication cycle reduction. To represent a multi-task optimization issue, we split the dataset into as many subsets as devices. Each device selects the most advantageous subset for every local iteration of the model. On a training dataset, our initial study demonstrates the algorithm's ability to converge various hospital and device counts. By merging a federated machine-learning approach with advanced deep machine-learning models, we can simply and accurately predict multidisciplinary cancer diseases in the human body. Furthermore, in the smart healthcare industry 5.0, the results of federated machine learning approaches are used to validate multidisciplinary cancer disease prediction. The proposed adaptive federated machine learning methodology achieved 90.0%, while the conventional federated learning approach achieved 87.30%, both of which were higher than the previous state-of-the-art methodologies for cancer disease prediction in the smart healthcare industry 5.0.

Contact details

Socials & Sites

Try JournoFinder For Free

Search and contact over 1M+ journalist profiles, browse 100M+ articles, and unlock powerful PR tools.

Start Your 7-Day Free Trial →