Articles

  • Oct 28, 2024 | nature.com | David Benrimoh |Igor D. Bandeira |Ian H. Kratter |Nolan Williams |Xiaoqian Xiao |Victoria Aranda | +4 more

    Stanford Neuromodulation Therapy (SNT), has recently shown rapid efficacy in difficult to treat (DTT) depression. We conducted an exploratory analysis of individual symptom improvements during treatment, correlated with fMRI, to investigate this rapid improvement in 23 DTT participants from an SNT RCT (12 active, 11 sham). Montgomery–Åsberg Depression Rating Scale item 7 (Lassitude) was the earliest to show improvements between active and sham, as early as treatment day 2. Lassitude score at treatment day 3 was predictive of response at 4 weeks post-treatment and response immediately after treatment. Participants with lower lassitude scores at treatment day 3 had different patterns of sgACC functional connectivity compared to participants with higher scores in both baseline and post-treatment minus baseline analyses. Further work will aim to first replicate these preliminary findings, and then to extend these findings and examine how SNT may affect lassitude and behavioral activation early in treatment.

  • Jul 6, 2024 | nature.com | Niharika Gajawelli |Adi Maron-Katz |Eleanor Cole |Ian H. Kratter |Manish Saggar |Nolan Williams | +4 more

    SNT is a high-dose accelerated intermittent theta-burst stimulation (iTBS) protocol coupled with functional-connectivity-guided targeting that is an efficacious and rapid-acting therapy for treatment-resistant depression (TRD). We used resting-state functional MRI (fMRI) data from a double-blinded sham-controlled randomized controlled trial1 to reveal the neural correlates of SNT-based symptom improvement. Neurobehavioral data were acquired at baseline, post-treatment, and 1-month follow-up. Our primary analytic objective was to investigate changes in seed-based functional connectivity (FC) following SNT and hypothesized that FC changes between the treatment target and the sgACC, DMN, and CEN would ensue following active SNT but not sham. We also investigated the durability of post-treatment observed FC changes at a 1-month follow-up. Study participants included transcranial magnetic stimulation (TMS)-naive adults with a primary diagnosis of moderate-to-severe TRD. Fifty-four participants were screened, 32 were randomized, and 29 received active or sham SNT. An additional 5 participants were excluded due to imaging artifacts, resulting in 12 participants per group (Sham: 5F; SNT: 5F). Although we did not observe any significant group × time effects on the FC between the individualized stimulation target (L-DLPFC) and the CEN or sgACC, we report an increased magnitude of negative FC between the target site and the DMN post-treatment in the active as compared to sham SNT group. This change in FC was sustained at the 1-month follow-up. Further, the degree of change in FC was correlated with improvements in depressive symptoms. Our results provide initial evidence for the putative changes in the functional organization of the brain post-SNT.

  • Jun 6, 2024 | nature.com | Taro Kishi |Kenji Sakuma |Yuki Matsuda |Nolan Williams |Nakao Iwata |Jonas Wilkening | +5 more

    In clinical practice, theta burst stimulation (TBS) presents as a more efficient and potentially more effective therapeutic modality than conventional repetitive transcranial magnetic stimulation (rTMS), as it allows for the delivery of more stimuli in less time and at similar intensities. To date, accelerated treatment plans according to various continuous (cTBS) and intermittent TBS (iTBS) protocols for depression have been proposed. To investigate which of the TBS protocols provided a favorable risk-benefit balance for individuals with depression, this systematic review and random-effects model network meta-analysis was conducted. The study outcomes included response rate (primary), depression symptom improvement, remission rate, all-cause discontinuation rate, incidence of switch to mania, and incidence of headache/discomfort at treatment site. In this meta-analysis, a total of 23 randomized controlled trials (n = 960, mean age = 41.88 years, with 60.78% females) were included. Approximately 69.57% of the trials included individuals with an exclusive diagnosis of major depressive disorder. The following six TBS protocols (target) were evaluated: cTBS (right-dorsolateral prefrontal cortex [R-DLPFC]), cTBS (R-DLPFC) + iTBS (left-DLPFC [L-DLPFC]), iTBS (L-DLPFC), iTBS (L-DLPFC) + iTBS (R-DLPFC), iTBS (left-dorsomedial prefrontal cortex) + iTBS (right-dorsomedial prefrontal cortex), and iTBS (occipital lobe). Compared to sham, cTBS (R-DLPFC) + iTBS (L-DLPFC), iTBS (L-DLPFC), and iTBS (occipital lobe) had a higher response rate (k = 23); cTBS (R-DLPFC) + iTBS (L-DLPFC) and iTBS (L-DLPFC) dominated in the depression symptom improvement (k = 23); and iTBS (L-DLPFC) had a higher remission rate (k = 15). No significant differences were found for all-cause discontinuation rate (k = 17), incidence of switch to mania (k = 7), and incidence of headache/discomfort at treatment site (k = 10) between any TBS protocols and sham. Thus, cTBS (R-DLPFC) + iTBS (L-DLPFC) and iTBS (L-DLPFC) demonstrate favorable risk-benefit balance for the treatment of depression.

Contact details

Socials & Sites

Try JournoFinder For Free

Search and contact over 1M+ journalist profiles, browse 100M+ articles, and unlock powerful PR tools.

Start Your 7-Day Free Trial →