
Articles
-
Feb 5, 2024 |
nature.com | K. Anderson |J. A. Marozas |V. Yu. Glebov |V. Gopalaswamy |H. McClow |C. A. Thomas | +14 more
Focussing laser light onto the surface of a small target filled with deuterium and tritium implodes it and leads to the creation of a hot and dense plasma, in which thermonuclear fusion reactions occur. In order for the plasma to become self-sustaining, the heating of the plasma must be dominated by the energy provided by the fusion reactions—a condition known as a burning plasma. A metric for this is the generalized Lawson parameter, where values above around 0.8 imply a burning plasma. Here, we report on hydro-equivalent scaling of experimental results on the OMEGA laser system and show that these have achieved core conditions that reach a burning plasma when the central part of the plasma, the hotspot, is scaled in size by at least a factor of 3.9 ± 0.10, which would require a driver laser energy of at least 1.7 ± 0.13 MJ. In addition, we hydro-equivalently scale the results to the 2.15 MJ of laser energy available at the National Ignition Facility and find that these implosions reach 86% of the Lawson parameter required for ignition. Our results support direct-drive inertial confinement fusion as a credible approach for achieving thermonuclear ignition and net energy in laser fusion. Hydro-equivalent scaling of recent direct-drive inertial confinement fusion implosions shows that a burning plasma can be achieved with a higher laser energy.
Try JournoFinder For Free
Search and contact over 1M+ journalist profiles, browse 100M+ articles, and unlock powerful PR tools.
Start Your 7-Day Free Trial →