Articles

  • Aug 23, 2024 | nature.com | Hongtao Xu |Hans W. Chen |Deliang Chen |Yingping Wang |Xu Yue |Lanlan Guo | +7 more

    Wildfires cause critical shifts in ecosystem functions, such as dramatic reductions in vegetation productivity. However, how fast vegetation regains its pre-fire productivity levels and the key influencing factors remain poorly understood on a global scale. Here we present the global estimates of post-fire vegetation productivity recovery from 2004 to 2021 using gross primary productivity observations and related proxies at a spatial resolution of 10 km, employing a random forest model to identify the key factors influencing recovery time. Roughly 87% of burned vegetation regained pre-fire productivity levels within 2 years, with evergreen needleleaf forests and savannas displaying the lengthiest recovery periods. During the recovery phase, post-fire climate conditions, such as soil moisture, vapour pressure deficit and air temperature, had nonlinear impacts on recovery time globally. These climatic factors exhibited a dominant role in regional recovery time in ~89% of the globally assessed area. As climate aridity decreased, the areas where recovery time was dominated by soil moisture and vapour pressure deficit decreased, while the influence of temperature increased. Soil-moisture-dominated regions witnessed reduced proportions of promoting vegetation recovery as aridity decreased, whereas vapour pressure deficit and air-temperature-dominated regions saw an increase in such proportions. Regions with strong human interventions were associated with accelerated vegetation recovery compared with similar ecosystems with smaller human interventions. These findings had important implications for global carbon-cycle assessments and fire-management strategies. More than 80% of vegetation burned globally regained its pre-fire level of productivity within 2 years, according to an assessment of post-fire vegetation productivity from 2004 to 2021.

  • Jul 12, 2024 | nature.com | Lei Wang |Deliang Chen

    AbstractRunoff and evapotranspiration (ET) are pivotal constituents of the water, energy, and carbon cycles. This research presents a 5-km monthly gridded runoff and ET dataset for 1998–2017, encompassing seven headwaters of Tibetan Plateau rivers (Yellow, Yangtze, Mekong, Salween, Brahmaputra, Ganges, and Indus) (hereinafter TPRED).

  • Jun 3, 2024 | nature.com | Lei Wang |Deliang Chen

    AbstractVegetation changes are expected to alter soil thermal regimes, consequently modifying climate feedbacks related to frozen ground thawing and carbon cycling in cold regions. The Tibetan Plateau (TP) contains diverse alpine ecosystems and the largest area of frozen ground in low–mid latitude regions. Evidence suggests ongoing vegetation greening and permafrost degradation during the past several decades on the TP.

  • May 14, 2024 | nature.com | Ziqian Wang |Deliang Chen

    AbstractThe South Asian summer monsoon (SASM) is a significant monsoon system that exerts a profound impact on climate and human livelihoods. According to 38 models from the Coupled Model Intercomparison Project Phase 6, the SASM circulation is projected to weaken significantly under global warming as seen in the weakened low-level westerly wind over the northern tropical Indian Ocean; however, the associated climate dynamics is still under debate.

Contact details

Socials & Sites

Try JournoFinder For Free

Search and contact over 1M+ journalist profiles, browse 100M+ articles, and unlock powerful PR tools.

Start Your 7-Day Free Trial →